agents package¶
Submodules¶
agents.Human module¶
-
class
agents.Human.Human¶ Bases:
agents.MobileAgent.MobileAgent-
calc_control_input(dT, goal, fx, fu, Xr, Xh, dot_Xr, dot_Xh, Mr, Mh, p_Mr_p_Xr, p_Mh_p_Xh, u0, min_u, max_u)¶ This function return a control input based on internal state and obstacle information
- Parameters
dT (float) – dT
goal (ndarray) – [x; y; z; 0; 0; 0]
fx (ndarray) – transition matrix
fu (ndarray) – transition matrix
Xr (ndarray) – estimate state of robot
Xh (ndarray) – estimate state of obstacle
dot_Xr (ndarray) – estimate gradient of robot state
dot_Xh (ndarray) – estimate gradient of obstacle state
Mr (ndarray) – cartesian position and velocity of the nearest point from robot to obstacle
Mh (ndarray) – cartesian position and velocity of the nearest point from obstacle to robot
p_Mr_p_Xr (ndarray) – derivative of robot cartesian state to internal state
p_Mh_p_Xh (ndarray) – derivative of obstacle cartesian state to internal state
u0 (ndarray) – reference control input, this is the default control input if there is no obstacle
min_u (ndarray) – control input saturation
max_u (ndarray) – control input saturation
-
d_min= 2¶
-
half_plane_ABC= []¶
-
k_v= 2¶
-
lambd= 0.5¶
-
yita= 2¶
-
agents.MobileAgent module¶
-
class
agents.MobileAgent.MobileAgent¶ Bases:
objectThis is the base class for algorithms. We assume all the algorithms use relative cartesian position and velocity to evaluate current safety index.
-
calc_control_input(dT, goal, fx, fu, Xr, Xh, dot_Xr, dot_Xh, Mr, Mh, p_Mr_p_Xr, p_Mh_p_Xh, u0, min_u, max_u)¶ This function return a control input based on internal state and obstacle information
- Parameters
dT (float) – dT
goal (ndarray) – [x; y; z; 0; 0; 0]
fx (ndarray) – transition matrix
fu (ndarray) – transition matrix
Xr (ndarray) – estimate state of robot
Xh (ndarray) – estimate state of obstacle
dot_Xr (ndarray) – estimate gradient of robot state
dot_Xh (ndarray) – estimate gradient of obstacle state
Mr (ndarray) – cartesian position and velocity of the nearest point from robot to obstacle
Mh (ndarray) – cartesian position and velocity of the nearest point from obstacle to robot
p_Mr_p_Xr (ndarray) – derivative of robot cartesian state to internal state
p_Mh_p_Xh (ndarray) – derivative of obstacle cartesian state to internal state
u0 (ndarray) – reference control input, this is the default control input if there is no obstacle
min_u (ndarray) – control input saturation
max_u (ndarray) – control input saturation
-
agents.PotentialField module¶
-
class
agents.PotentialField.PotentialField¶ Bases:
agents.MobileAgent.MobileAgentPotential field method. This method is inspired from gravity potential field.
-
calc_control_input(dT, goal, fx, fu, Xr, Xh, dot_Xr, dot_Xh, Mr, Mh, p_Mr_p_Xr, p_Mh_p_Xh, u0, min_u, max_u)¶ This function return a control input based on internal state and obstacle information
- Parameters
dT (float) – dT
goal (ndarray) – [x; y; z; 0; 0; 0]
fx (ndarray) – transition matrix
fu (ndarray) – transition matrix
Xr (ndarray) – estimate state of robot
Xh (ndarray) – estimate state of obstacle
dot_Xr (ndarray) – estimate gradient of robot state
dot_Xh (ndarray) – estimate gradient of obstacle state
Mr (ndarray) – cartesian position and velocity of the nearest point from robot to obstacle
Mh (ndarray) – cartesian position and velocity of the nearest point from obstacle to robot
p_Mr_p_Xr (ndarray) – derivative of robot cartesian state to internal state
p_Mh_p_Xh (ndarray) – derivative of obstacle cartesian state to internal state
u0 (ndarray) – reference control input, this is the default control input if there is no obstacle
min_u (ndarray) – control input saturation
max_u (ndarray) – control input saturation
-
agents.SafeSet module¶
-
class
agents.SafeSet.SafeSet(d_min=2, k_v=2, yita=10)¶ Bases:
agents.MobileAgent.MobileAgentThis is the Safe Set method. Please refer to the paper for details.
-
calc_control_input(dT, goal, fx, fu, Xr, Xh, dot_Xr, dot_Xh, Mr, Mh, p_Mr_p_Xr, p_Mh_p_Xh, u0, min_u, max_u)¶ This function return a control input based on internal state and obstacle information
- Parameters
dT (float) – dT
goal (ndarray) – [x; y; z; 0; 0; 0]
fx (ndarray) – transition matrix
fu (ndarray) – transition matrix
Xr (ndarray) – estimate state of robot
Xh (ndarray) – estimate state of obstacle
dot_Xr (ndarray) – estimate gradient of robot state
dot_Xh (ndarray) – estimate gradient of obstacle state
Mr (ndarray) – cartesian position and velocity of the nearest point from robot to obstacle
Mh (ndarray) – cartesian position and velocity of the nearest point from obstacle to robot
p_Mr_p_Xr (ndarray) – derivative of robot cartesian state to internal state
p_Mh_p_Xh (ndarray) – derivative of obstacle cartesian state to internal state
u0 (ndarray) – reference control input, this is the default control input if there is no obstacle
min_u (ndarray) – control input saturation
max_u (ndarray) – control input saturation
-
agents.SlidingMode module¶
-
class
agents.SlidingMode.SlidingMode¶ Bases:
agents.MobileAgent.MobileAgent-
calc_control_input(dT, goal, fx, fu, Xr, Xh, dot_Xr, dot_Xh, Mr, Mh, p_Mr_p_Xr, p_Mh_p_Xh, u0, min_u, max_u)¶ This function return a control input based on internal state and obstacle information
- Parameters
dT (float) – dT
goal (ndarray) – [x; y; z; 0; 0; 0]
fx (ndarray) – transition matrix
fu (ndarray) – transition matrix
Xr (ndarray) – estimate state of robot
Xh (ndarray) – estimate state of obstacle
dot_Xr (ndarray) – estimate gradient of robot state
dot_Xh (ndarray) – estimate gradient of obstacle state
Mr (ndarray) – cartesian position and velocity of the nearest point from robot to obstacle
Mh (ndarray) – cartesian position and velocity of the nearest point from obstacle to robot
p_Mr_p_Xr (ndarray) – derivative of robot cartesian state to internal state
p_Mh_p_Xh (ndarray) – derivative of obstacle cartesian state to internal state
u0 (ndarray) – reference control input, this is the default control input if there is no obstacle
min_u (ndarray) – control input saturation
max_u (ndarray) – control input saturation
-
agents.SublevelSafeSet module¶
-
class
agents.SublevelSafeSet.SublevelSafeSet(d_min=2, k_v=1, gamma=5)¶ Bases:
agents.MobileAgent.MobileAgentThis is the sublevel safeset. Please refer to the paper for details.
-
calc_control_input(dT, goal, fx, fu, Xr, Xh, dot_Xr, dot_Xh, Mr, Mh, p_Mr_p_Xr, p_Mh_p_Xh, u0, min_u, max_u)¶ This function return a control input based on internal state and obstacle information
- Parameters
dT (float) – dT
goal (ndarray) – [x; y; z; 0; 0; 0]
fx (ndarray) – transition matrix
fu (ndarray) – transition matrix
Xr (ndarray) – estimate state of robot
Xh (ndarray) – estimate state of obstacle
dot_Xr (ndarray) – estimate gradient of robot state
dot_Xh (ndarray) – estimate gradient of obstacle state
Mr (ndarray) – cartesian position and velocity of the nearest point from robot to obstacle
Mh (ndarray) – cartesian position and velocity of the nearest point from obstacle to robot
p_Mr_p_Xr (ndarray) – derivative of robot cartesian state to internal state
p_Mh_p_Xh (ndarray) – derivative of obstacle cartesian state to internal state
u0 (ndarray) – reference control input, this is the default control input if there is no obstacle
min_u (ndarray) – control input saturation
max_u (ndarray) – control input saturation
-
agents.ZeroingBarrierFunction module¶
-
class
agents.ZeroingBarrierFunction.ZeroingBarrierFunction(d_min=3, t=0.5, gamma=1)¶ Bases:
agents.MobileAgent.MobileAgentThis is the Zeroing Barrier Function method. Please refer to the paper for details.
-
calc_control_input(dT, goal, fx, fu, Xr, Xh, dot_Xr, dot_Xh, Mr, Mh, p_Mr_p_Xr, p_Mh_p_Xh, u0, min_u, max_u)¶ This function return a control input based on internal state and obstacle information
- Parameters
dT (float) – dT
goal (ndarray) – [x; y; z; 0; 0; 0]
fx (ndarray) – transition matrix
fu (ndarray) – transition matrix
Xr (ndarray) – estimate state of robot
Xh (ndarray) – estimate state of obstacle
dot_Xr (ndarray) – estimate gradient of robot state
dot_Xh (ndarray) – estimate gradient of obstacle state
Mr (ndarray) – cartesian position and velocity of the nearest point from robot to obstacle
Mh (ndarray) – cartesian position and velocity of the nearest point from obstacle to robot
p_Mr_p_Xr (ndarray) – derivative of robot cartesian state to internal state
p_Mh_p_Xh (ndarray) – derivative of obstacle cartesian state to internal state
u0 (ndarray) – reference control input, this is the default control input if there is no obstacle
min_u (ndarray) – control input saturation
max_u (ndarray) – control input saturation
-